FCC PART 15, SUBPART C TEST REPORT

for

RadioShack REMOTE CONTROL CATALOG NUMBER: 15-2117

Prepared for

RadioShack CORPORATION 100 THROCKMORTON STREET, SUITE 1300 FORT WORTH, TEXAS 76102-2802

Prepared by:	
	KYLE FUJIMOTO
Approved by:	

MICHAEL CHRISTENSEN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JULY 19, 2002

	REPORT	APPENDICES				TOTAL	
	BODY	A	В	С	D	E	
PAGES	16	2	2	10	15	2	47

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMM	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2.1 2.2 2.3 2.4 2.5 2.6	ADMINISTRATIVE DATA Location of Testing Traceability Statement Cognizant Personnel Date Test Sample was Received Disposition of the Test Sample Abbreviations and Acronyms	6 6 6 6 6 6
3.	APPLICABLE DOCUMENTS	7
4. 4.1 4.1.1	Description of Test Configuration Description of Test Configuration - EMI Cable Construction and Termination	8 8 9
5.1 5.2	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT EUT and Accessory List EMI Test Equipment	10 10 11
6. 6.1 6.2	TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding	12 12 12
7.1 7.2	Test Procedures Radiated Emissions (Spurious and Harmonics) Test Bandwidth of the Fundamental	13 13 15
R	CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
A	Modifications to the EUT		
В	Additional Models Covered Under This Report		
С	Diagrams, Charts and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
D	Data Sheets		
Е	Laboratory Recognitions		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site

FCC ID: AAO1502117 Report No.: B20711D2 Page 4 of 16

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: RadioShack Remote Control

Catalog Number: 15-2117

S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: RadioShack Corporation

100 Throckmorton Street, Suite 1300

Fort Worth, Texas 76102-2802

Manufacturer: Universal Electronics, Inc.

6101 Gateway Drive

Cypress, California 90630

Test Date: July 10, 2002

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart C, Sections 15.205, 15.209, and 15.231

Test Procedure: ANSI C63.4: 1992

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz - 30 MHz	The EUT is battery powered only and cannot be connected to the AC public mains. Thus, this test was not performed.
2	Radiated RF Emissions, 10 kHz - 4300 MHz	Complies with the limits of CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.249

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the RadioShack Remote Control Catalog Number: 15-2117. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined by CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.231.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

RadioShack Corporation

Kimberly Card Manager, Product Evaluation and Compliance

Universal Electronics, Inc.

Jesse Mendez Electrical Engineer

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer Michael Christensen Test Engineer

2.4 Date Test Sample was Received

The test sample was received on July 10, 2002.

2.5 Disposition of the Test Sample

The sample has not been returned to RadioShack Corporation as of July 19, 2002.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

FCC ID: AAO1502117 Report No.: B20711D2 Page 7 of 16

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Subpart C	FCC Rules – Radio frequency devices – Intentional Radiators
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

FCC ID: AAO1502117 Report No.: B20711D2 Page 8 of 16

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The RadioShack Remote Control Catalog Number: 15-2117 (EUT) was tested as a stand alone unit. The EUT was transmitting on a continuous basis. The antenna connector was soldered onto the EUT's PCB. The EUT was tested in three orthogonal axis.

The final radiated data was taken in the mode above. Please see Appendix D for the data sheets.

4.1.1 Cable Construction and Termination

The EUT has no external cables.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	CATALOG	SERIAL	FCC ID
		NUMBER	NUMBER	
RadioShack REMOTE	UNIVERSAL	15-2117	N/A	AAO1502117
CONTROL (EUT)	ELECTRONICS,			
	INC.			

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiated Emissions Manual Test – Radiated	Compatible Electronics	N/A	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	June 21, 2002	June 21, 2003
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	June 21, 2002	June 21, 2003
Spectrum Analyzer – Quasi-Peak Adapter	Hewlett Packard	85662A	2811A01363	June 21, 2002	June 21, 2003
Preamplifier	Com Power	PA-102	1017	Dec. 31, 2001	Dec. 31, 2002
Biconical Antenna	Com Power	AB-100	1548	Oct. 11, 2001	Oct. 11, 2002
Log Periodic Antenna	Com Power	AL-100	16089	Oct. 11, 2001	Oct. 11, 2002
Computer	Hewlett Packard	D5251A 888	US74458128	N/A	N/A
Printer	Hewlett Packard	C5886A	SG7CM1P090	N/A	N/A
Monitor	Hewlett Packard	D5258A	DK74889705	N/A	N/A
Loop Antenna	Com-Power	AL-130	17070	June 19, 2002	June 19, 2003
Horn Antenna	Antenna Research	DRG-118/A	1053	Jan. 13, 2002	Jan. 13, 2003
Microwave Preamplifier	Com-Power	PA-122	25195	Jan. 7, 2002	Jan. 7, 2003

FCC ID: AAO1502117 Report No.: B20711D2 Page 12 of 16

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

For the peak readings below 1000 MHz that were within 3 dB of the spec limit or higher, the quasi-peak adapter was used.

For the peak readings above 1000 MHz that were within 3dB of the spec limit or higher, the readings were averaged manually by narrowing the video filter down to 10 Hz and slowing the sweep time to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 4.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix D.

7.2 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. A plot of the -20 dB bandwidth is located in Appendix D.

8. CONCLUSIONS

The RadioShack Remote Control Catalog Number: 15-2117 meets all of the specification limits defined in CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.231.

APPENDIX A

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX B

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

RadioShack Remote Control Catalog Number: 15-2117

S/N: N/A

There were no additional models covered under this report.

APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

X X X X \mathbf{X} X **OPEN LAND > 15 METERS** X X X $\mathbf{d} = \sqrt{3} \cdot \mathbf{D}$ OPEN AREA **REQUIRED BY OET-55** X X X X X X

OPEN LAND > 15 METERS

The second secon

FRONT VIEW

RadioShack CORPORATION
RadioShack REMOTE CONTROL
CATALOG NUMBER: 15-2117
FCC SUBPART C - RADIATED EMISSIONS – 07-10-02

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

RadioShack CORPORATION
RadioShack REMOTE CONTROL
CATALOG NUMBER: 15-2117
FCC SUBPART C - RADIATED EMISSIONS – 07-10-02

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

COM-POWER AB-100

BICONICAL ANTENNA

S/N: 01548

CALIBRATION DATE: OCTOBER 11, 2001

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	13.70	120	11.00
35	13.70	125	11.20
40	11.80	140	12.50
45	12.30	150	13.20
50	11.00	160	13.50
60	10.40	175	14.60
70	8.60	180	14.40
80	8.30	200	15.90
90	8.30	250	17.60
100	8.80	300	19.90

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16089

CALIBRATION DATE: OCTOBER 11, 2001

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	14.10	700	20.60
400	15.10	800	22.40
500	16.60	900	22.70
600	19.90	1000	26.50

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: DECEMBER 31, 2001

FREQUENCY	FACTOR	FREQUENCY	FACTOR		
(MHz)	(dB)	(MHz)	(dB)		
30	38.5	300	38.5		
40	38.5	350	38.4		
50	38.5	400	38.2		
60	38.5	450	37.8		
70	38.5	500	38.0		
80	38.5	550	38.2		
90	38.3	600	38.2		
100	38.3	650	38.0		
125	38.6	700	38.1		
150	38.5	750	37.7		
175	38.4	800	37.4		
200	38.5	850	37.9		
225	38.5	900	37.2		
250	38.4	950	36.8		
275	38.4	1000	37.3		

COM-POWER PA-122

MICROWAVE PREAMPLIFIER

S/N: 25195

CALIBRATION DATE: JANUARY 7, 2002

FREQUENCY	FACTOR	FREQUENCY	FACTOR		
(GHz)	(dB)	(GHz)	(dB)		
1.0	33.7	9.5	31.8		
1.1	33.4	10.0	32.2		
1.2	33.1	11.0	31.4		
1.3	33.1	12.0	30.2		
1.4	33.2	13.0	32.9		
1.5	32.5	14.0	33.9		
1.6	32.7	15.0	32.4		
1.7	32.3	16.0	32.2		
1.8	32.3	17.0	31.5		
1.9	31.4	18.0	32.2		
2.0	32.8	19.0	31.2		
2.5	33.3	20.0	31.3		
3.0	31.7	21.0	31.7		
3.5	31.6	22.0	29.7		
4.0	31.2				
4.5	31.2				
5.0	31.0				
5.5	31.3				
6.0	32.1				
6.5	32.1				
7.0	31.8				
7.5	32.0				
8.0	33.1				
8.5	32.0				
9.0	30.8				

ANTENNA RESEARCH DRG-118/A

HORN ANTENNA

S/N: 1053

CALIBRATION DATE: JANUARY 13, 2002

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)		
1.0	25.5	9.5	39.1		
1.5	26.6	10.0	39.7		
2.0	29.4	10.5	40.9		
2.5	30.4	11.0	40.7		
3.0	31.2	11.5	42.4		
3.5	32.3	12.0	42.6		
4.0	32.9	12.5	42.4		
4.5	33.0	13.0	41.5		
5.0	34.8	13.5	41.0		
5.5	35.2	14.0	40.5		
6.0	36.4	14.5	43.6		
6.5	36.6	15.0	43.7		
7.0	38.8	15.5	43.3		
7.5	38.8	16.0	42.8		
8.0	38.0	16.5	43.0		
8.5	38.1	17.0	42.7		
9.0	39.9	17.5	44.0		
		18.0	41.8		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17070

CALIBRATION DATE: JUNE 19, 2002

EDECLIENCY	NA CNEEKO	TI E CERTO
FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-40.4	11.1
0.01	-40.3	11.2
0.02	-41.2	10.3
0.05	-41.6	9.9
0.07	-41.4	10.1
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.5	-41.3	10.2
0.7	-41.4	10.1
1	-40.9	10.6
2	-40.6	10.9
3	-40.5	11.0
4	-40.8	10.7
5	-40.2	11.3
10	-40.7	10.8
15	-41.4	10.1
20	-41.6	9.9
25	-41.7	9.8
30	-42.9	8.6

APPENDIX D

DATA SHEETS

RADIATED EMISSIONS DATA SHEETS

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
CATALOG #:	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth (dogrees)	Axis	Tx	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
										, ,	. ,	()		. ,		Comments
430.0000	62.1	51.8 A	Н	1.0	90	X	LOW	15.6	3.2	0.0	0.0	0.0	70.6	-10.0	80.6	
430.0000	47.0	36.7 A	Н	1.0	90	Y	LOW	15.6	3.2	0.0	0.0	0.0	55.5	-25.1	80.6	
430.0000	61.3	51.0 A	Н	1.0	90	Z	LOW	15.6	3.2	0.0	0.0	0.0	69.8	-10.8	80.6	
430.0000	54.1	43.8 A	V	1.0	90	X	LOW	15.6	3.2	0.0	0.0	0.0	62.6	-18.0	80.6	
430.0000	65.1	54.8 A	V	1.0	90	Y	LOW	15.6	3.2	0.0	0.0	0.0	73.6	-7.0	80.6	
430.0000	56.8	46.5 A	V	1.0	90	Z	LOW	15.6	3.2	0.0	0.0	0.0	65.3	-15.3	80.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 1 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
CATALOG #:	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth (degrees)	Axis	Tx	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
860.0000	37.1		H	1.0	90	X	LOW	22.6	4.8	0.0	0.0	0.0	54.1	-6.5	60.6	Comments
								1								
860.0000	30.3	20.0 A	Н	1.0	90	Y	LOW	22.6	4.8	0.0	0.0	0.0	47.3	-13.3	60.6	
860.0000	40.3	30.0 A	Н	1.0	90	Z	LOW	22.6	4.8	0.0	0.0	0.0	57.3	-3.3	60.6	
860.0000	33.8	23.5 A	V	1.0	0	X	LOW	22.6	4.8	0.0	0.0	0.0	50.8	-9.8	60.6	
860.0000	34.0	23.7 A	V	1.0	90	Y	LOW	22.6	4.8	0.0	0.0	0.0	51.0	-9.6	60.6	
860.0000	30.2	19.9 A	V	1.0	0	Z	LOW	22.6	4.8	0.0	0.0	0.0	47.2	-13.4	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 2 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
CATALOG #:	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak Reading	Average (A)	Antenna Polar.	Antenna	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	or Quasi- Peak (QP)						(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
1290.0000	53.5	43.2 A	Н	1.0	0	X	LOW	26.1	2.6	33.1	0.0	0.0	38.8	-21.8	60.6	
1290.0000	57.7	47.4 A	Н	1.0	0	Y	LOW	26.1	2.6	33.1	0.0	0.0	43.0	-17.6	60.6	
1290.0000	58.7	48.4 A	Н	1.0	180	Z	LOW	26.1	2.6	33.1	0.0	0.0	44.0	-16.6	60.6	
1290.0000	62.9	52.6 A	V	1.0	0	X	LOW	26.1	2.6	33.1	0.0	0.0	48.2	-12.4	60.6	
1290.0000	61.7	51.4 A	V	1.0	180	Y	LOW	26.1	2.6	33.1	0.0	0.0	47.0	-13.6	60.6	
1290.0000	55.3	45.0 A	V	1.0	0	Z	LOW	26.1	2.6	33.1	0.0	0.0	40.6	-20.0	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 3 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average			Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quas Peak (Q		Polar. (V or H)		Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	(dB)	Limit (dBuV/m)	Comments
1720.0000	57.0	46.7	A	Н	1.0	90	X	LOW	27.8	3.3	32.3	0.0	0.0	45.6	-8.4	54.0	
1720.0000	60.0	49.7	A	Н	1.0	0	Y	LOW	27.8	3.3	32.3	0.0	0.0	48.6	-5.4	54.0	
1720.0000	47.2	36.9	A	Н	1.0	90	Z	LOW	27.8	3.3	32.3	0.0	0.0	35.8	-18.2	54.0	
1720.0000	55.9	45.6	A	V	2.0	0	X	LOW	27.8	3.3	32.3	0.0	0.0	44.5	-9.5	54.0	
1720.0000	54.2	43.9	A	V	2.0	0	Y	LOW	27.8	3.3	32.3	0.0	0.0	42.8	-11.2	54.0	
1720.0000	49.8	39.5	A	V	2.0	0	Z	LOW	27.8	3.3	32.3	0.0	0.0	38.4	-15.6	54.0	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 4 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak Reading	Average (A	9	Antenna	EUT Azimuth	EUT Axis	EUT Tx	Antenna Factor	Cable Loss	Amplifier Gain	Distance Factor	Mixer Factor	*Corrected Reading	Delta **	Spec Limit	
MHz	(dBuV)	or Quasi- Peak (QP)	(V or H)					(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)	Comments
2150.0000	47.3	37.0 A	Н	1.0	90	X	LOW	29.7	3.6	32.4	0.0	0.0	37.9	-22.7	60.6	
2150.0000	53.9	43.6 A	Н	1.0	90	Y	LOW	29.7	3.6	32.4	0.0	0.0	44.5	-16.1	60.6	
2150.0000	49.5	39.2 A	Н	1.0	0	Z	LOW	29.7	3.6	32.4	0.0	0.0	40.1	-20.5	60.6	
2150.0000	52.0	41.7 A	V	2.0	90	X	LOW	29.7	3.6	32.4	0.0	0.0	42.6	-18.0	60.6	
2150.0000	52.8	42.5 A	V	2.0	0	Y	LOW	29.7	3.6	32.4	0.0	0.0	43.4	-17.2	60.6	
2150.0000	49.8	39.5 A	V	1.0	0	Z	LOW	29.7	3.6	32.4	0.0	0.0	40.4	-20.2	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 5 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	•

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec	
MHz	Reading (dBuV)		Polar. (V or H)	Height (meters)	Azimuth (degrees)	Axis (X,Y,Z)	Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
2580.0000	49.6	39.3 A	Н	1.0	180	X	LOW	30.5	3.8	33.0	0.0	0.0	40.5	-20.1	60.6	
2580.0000	55.4	45.1 A	Н	1.0	180	Y	LOW	30.5	3.8	33.0	0.0	0.0	46.3	-14.3	60.6	
2580.0000	44.7	34.4 A	Н	1.0	0	Z	LOW	30.5	3.8	33.0	0.0	0.0	35.6	-25.0	60.6	
2580.0000	51.0	40.7 A	V	1.5	90	X	LOW	30.5	3.8	33.0	0.0	0.0	41.9	-18.7	60.6	
2580.0000	49.7	39.4 A	V	1.0	0	Y	LOW	30.5	3.8	33.0	0.0	0.0	40.6	-20.0	60.6	
2580.0000	51.3	41.0 A	V	1.0	0	Z	LOW	30.5	3.8	33.0	0.0	0.0	42.2	-18.4	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 6 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average (A)	Antenna			EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
MII.	Reading	or Quasi-	Polar.		Azimuth	Axis	Tx	Factor	Loss	Gain	Factor	Factor (dB)	Reading	** (JD)	Limit	Comments
MHz	(dBuV)	,			(degrees)			(dB)	(dB)	(dB)	(dB)	()	(dBuV/m)	(dB)	(dBuV/m)	Comments
3010.0000	44.2	33.9 A	Н	1.0	0	X	LOW	31.2	5.2	31.7	0.0	0.0	38.6	-22.0	60.6	
3010.0000	39.9	29.6 A	Н	1.0	0	Y	LOW	31.2	5.2	31.7	0.0	0.0	34.3	-26.3	60.6	
3010.0000	46.3	36.0 A	Н	1.0	90	Z	LOW	31.2	5.2	31.7	0.0	0.0	40.7	-19.9	60.6	
3010.0000	41.5	31.2 A	V	1.0	90	X	LOW	31.2	5.2	31.7	0.0	0.0	35.9	-24.7	60.6	
3010.0000	49.7	39.4 A	V	1.0	180	Y	LOW	31.2	5.2	31.7	0.0	0.0	44.1	-16.5	60.6	
3010.0000	42.0	31.7 A	V	1.0	0	Z	LOW	31.2	5.2	31.7	0.0	0.0	36.4	-24.2	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 7 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average (A)	Antenna			EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected	Delta	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar.		Azimuth (degrees)	Axis	Tx	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
3440.0000	43.5	33.2 A	H	1.0	90	X	LOW	32.2	5.0	31.6	0.0	0.0	38.7	-21.9	60.6	Comments
	1															
3440.0000	45.2	34.9 A	Н	1.5	90	Y	LOW	32.2	5.0	31.6	0.0	0.0	40.4	-20.2	60.6	
3440.0000	42.1	31.8 A	Н	2.0	90	Z	LOW	32.2	5.0	31.6	0.0	0.0	37.3	-23.3	60.6	
3440.0000	44.1	33.8 A	V	1.5	270	X	LOW	32.2	5.0	31.6	0.0	0.0	39.3	-21.3	60.6	
3440.0000	43.5	33.2 A	V	1.0	0	Y	LOW	32.2	5.0	31.6	0.0	0.0	38.7	-21.9	60.6	
3440.0000	42.0	31.7 A	V	1.5	0	Z	LOW	32.2	5.0	31.6	0.0	0.0	37.2	-23.4	60.6	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 8 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5	%
MODEL	15-2117	PEAK TO AVG	-10.3140032	dB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	•

Frequency	Peak	Average (A	/	Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)		Height (meters)	Azimuth (degrees)		Tx Channel	Factor (dB)	Loss (dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	** (dB)	Limit (dBuV/m)	Comments
3870.0000	35.4	25.1 A	Н	1.0	0	X	LOW	32.7	5.3	31.3	0.0	0.0	31.8	-22.2	54.0	
3870.0000	35.2	24.9 A	Н	1.0	0	Y	LOW	32.7	5.3	31.3	0.0	0.0	31.6	-22.4	54.0	
3870.0000	37.7	27.4 A	Н	1.0	90	Z	LOW	32.7	5.3	31.3	0.0	0.0	34.1	-19.9	54.0	
3870.0000	42.8	32.5 A	V	1.0	270	X	LOW	32.7	5.3	31.3	0.0	0.0	39.2	-14.8	54.0	
3870.0000	42.6	32.3 A	V	1.0	180	Y	LOW	32.7	5.3	31.3	0.0	0.0	39.0	-15.0	54.0	
3870.0000	39.5	29.2 A	V	1.0	270	Z	LOW	32.7	5.3	31.3	0.0	0.0	35.9	-18.1	54.0	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 9 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

COMPANY	RadioShack Corporation	DATE	7/10/02	
EUT	RadioShack Remote Control	DUTY CYCLE	30.5 %	6
MODEL	15-2117	PEAK TO AVG	-10.3140032 d	IB
S/N	N/A	TEST DIST.	3	Meters
TEST ENGINEER	KYLE FUJIMOTO	LAB	D	

Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable Loss	Amplifier		Mixer	*Corrected	Delta **	Spec	
MHz	Reading (dBuV)	or Quasi- Peak (QP)	Polar. (V or H)		Azimuth (degrees)		Tx Channel	Factor (dB)	(dB)	Gain (dB)	Factor (dB)	Factor (dB)	Reading (dBuV/m)	(dB)	Limit (dBuV/m)	Comments
4300.0000	35.2	24.9 A	Н	1.0	180	X	LOW	33.6	5.5	31.2	0.0	0.0	32.8	-21.2	54.0	
4300.0000	38.0	27.7 A	Н	1.0	90	Y	LOW	33.6	5.5	31.2	0.0	0.0	35.6	-18.4	54.0	
4300.0000	40.2	29.9 A	Н	1.0	90	Z	LOW	33.6	5.5	31.2	0.0	0.0	37.8	-16.2	54.0	
4300.0000	43.8	33.5 A	V	1.0	0	X	LOW	33.6	5.5	31.2	0.0	0.0	41.4	-12.6	54.0	
4300.0000	44.5	34.2 A	V	1.0	90	Y	LOW	33.6	5.5	31.2	0.0	0.0	42.1	-11.9	54.0	
4300.0000	39.5	29.2 A	V	1.0	180	Z	LOW	33.6	5.5	31.2	0.0	0.0	37.1	-16.9	54.0	

 $^{* \} CORRECTED \ READING = METER \ READING + ANTENNA \ FACTOR + CABLE \ LOSS - AMPLIFIER \ GAIN$

PAGE 10 of PAGE 10

^{**} DELTA = SPEC LIMIT - CORRECTED READING

Page: 1 of 1

Test location: Compatible Electronics

Customer : RadioShack Corporation Date: 7/10/2002

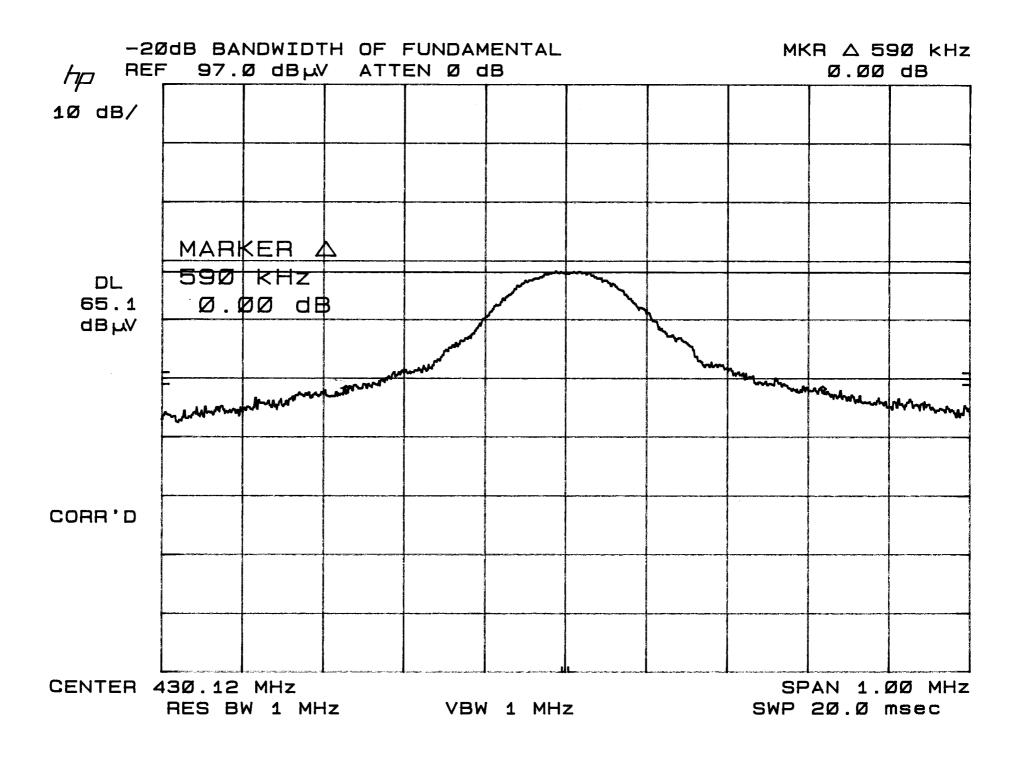
Manufacturer : RadioShack Corporation Time : 16.56

EUT name : RadioShack Remote Control Catalog # : 15-2117

Specification: Fcc_B Test distance: 3.0 mtrs Lab: D
Distance correction factor(20*log(test/spec)) : 0.00

Test Mode : SPURIOUS EMISSIONS FROM THE EUT

VERTICAL AND HORIZONTAL POLARIZATION 10 kHz - 4500 MHz


TEMPERATURE 75 DEGREES F., RELATIVE HUMIDITY 45%

TESTED BY: KYLE FUJIMOTO

NO SPURIOUS EMISSIONS FROM THE EUT WERE FOUND FROM 10 kHz TO 4500 MHz THE EUT WAS TESTED IN BOTH POLARIZATIONS

-20 dB BANDWIDTH DATA SHEET

APPENDIX E

LABORATORY RECOGNITIONS

FCC ID: AAO1502117 Report No.: B20711D2

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200063-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

